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Abstract
A unique analytical result for the Migdal–Kadanoff hierarchical lattice is
obtained. The scaling of the defect energy for a zero-dimensional spin glass
is derived for a bond distribution that is continuous at the origin. The value of
the ‘stiffness’ exponent in zero dimensions, y0 = −1, corresponds to the value
also found in one dimension. This result complements and completes earlier
findings for yd at d > 0.

PACS numbers: 75.10.Nr, 05.50.+q, 05.40.−a

A quantity of fundamental importance for the modelling of amorphous magnetic materials
through spin glasses [1] is the ‘stiffness’ exponent y [2, 3]. The stiffness of a spin configuration
describes the typical rise in magnetic energy �E due to an induced defect interface of size
L. In a glassy system, the potential energy function resembles a high-dimensional mountain
landscape over its variables [4]. Any defect-induced displacement of size L in such a landscape
may move a system equally likely up or down in energy �E. Averaging over many incarnations
of such a system then results in a typical energy scale

〈|�E|〉 ∼ Ly (L → ∞). (1)

The importance of this exponent for small excitations in disordered spin systems has been
discussed in many contexts [1–3, 5–8]. In particular, it signifies a renormalized coupling
strength (across any hypothetical interface) between regions in space separated by a distance
L [3]: if yd > 0, regions in space are strongly coupled at low temperature and spin glass
ordering ensues, i.e. Tg > 0.

Reference [9] provided a description of yd as a continuous function of dimension d using a
fit to the data obtained in [10] for d = 2, 3, . . . , 6. That fit became credible in that it reproduced
the exactly known result in d = 1, y1 = −1, to within less than 1%. Hence, it validated the
values for yd found in [10, 11] and produced a number of predictions such as that dl = 5/2
may be the lower critical dimension (the dimension in which yd = 0) for Ising spin glasses,
in accordance with an earlier calculation invoking replica symmetry breaking [12].

In a quest for understanding universality in spin glasses, there has been considerable
interest recently in the behaviour of yd even for d < dl, where any spin glass ordering
is unstable. Presumably, for divergent energy scales [8] in equation (1), i.e. for yd > 0,

0305-4470/06/3410641+06$30.00 © 2006 IOP Publishing Ltd Printed in the UK 10641

http://dx.doi.org/10.1088/0305-4470/39/34/003
http://stacks.iop.org/JPhysA/39/10641


10642 S Boettcher

1

0

-1

-2

0 1 2 3 4 5 6

St
if

fn
es

s 
y d

Dimension d 

ydisc

 ycont  

Ref.[11]

Ref.[18]

cubic fit

Figure 1. Plot of the spin glass stiffness exponent yd as a function of dimension d. Shown are
the values for yd on hyper-cubic lattices from [11, 18] and a cubic fit to that data. For bounded
distributions, the exponent remains locked at ydisc ≡ 0 for d � dl = 5/2 (upper horizontal line).
For continuous distributions, the fit reproduces the exact result, y1 = −1–0.8% and suggests
y0 = −2. In contrast, the result here suggests ycont

0 = −1 and, hence, ycont ≡ −1 for all d � 1
(lower horizontal line).

universality holds and low-temperature properties of the system are independent of the details
of the bond distribution, as long as it possesses a zero mean and unit variance. In contrast,
below the lower critical dimension significant differences have been found between classes
of bond distributions [8, 13, 14]. With y < 0, energy scales contract under renormalization,
which magnifies details of the bond distribution near J = 0. Especially, for all d < dl, a
discrete bond distribution (J = ±1) (which has an energy gap near J = 0) leads to trivial
scaling in equation (1), as was found numerically for d = 2 [13] and is exactly known for
d = 1. (In a linear chain of L spins, the T = 0 energy difference |�E| for reversed boundary
conditions is given by the smallest bond weight, |J | = 1, independent of L.) Only bond
distributions P(J ) which are continuous near the origin P(0) obtain non-trivial scaling as
represented by the curve in [9], including the exact result y1 = −1. (Here, the smallest bond
weight |J | in the chain approaches zero with 1/L.)

In this paper, we report on a (rather fortuitous) analytical result for a zero-dimensional
spin glass that further clarifies the behaviour of yd<dl

for a continuous bond distribution. In
the Migdal–Kadanoff hierarchical lattice (MK) [2, 3, 8, 14] we find for a d = 0 dimensional
spin glass that y0 = −1 exactly.

To our knowledge, aside from d = 1 (where MK is trivially exact) and the large-link limit
[8], this is the only exact result for MK applied to spin glasses. While not of great practical
relevance, studying physical systems in unphysical dimensions has proved to be of significant
theoretical relevance [15, 16]. A zero-dimensional spin glass in particular has in fact been
considered previously in [17].

Our result suggests a behaviour for yd as depicted in figure 1: while for a discrete bond
distribution it is ydisc

d ≡ 0 for all d � dl, for a continuous bond distribution, yd first extends
smoothly to (non-trivial) negative values through dl towards d = 1, beyond which it appears
to get fixed at ycont

d ≡ −1 for all d � 1. As long as yd > 0 for d > dl the exponent is believed
to be universal, independent of the bond distribution.

The Migdal–Kadanoff (MK) hierarchical lattice [19, 20] provides a real-space
renormalization scheme that approximates especially low-dimensional spin glasses well and
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Figure 2. Bond-moving scheme in the Migdal–Kadanoff hierarchical lattice, here for a square
lattice (d = 2) with l = 2, i.e. b = 2 in equation (2). Starting from the lattice with unit bonds (left),
bonds in intervening hyper-planes are projected onto every lth plane in one direction (middle), then
subsequent directions, to re-obtain a similar hyper-cubic lattice of bond-length l (right). The
renormalized bonds in this case consist of b = 2 branches, each of a series of l = 2 bonds.

(This figure is in colour only in the electronic version)

is trivially exact in d = 1. These lattices have a simple recursive, yet geometric, structure and
are well studied [2, 3, 8, 21]. Starting from generation I with a single bond, at each subsequent
generation I + 1, all bonds from I are replaced with a new sub-graph. This structure of
the sub-graph arises from the bond-moving scheme, as shown in figure 2, in d dimensions
[19, 20]: in a hyper-cubic lattice of unit bond length, at first all l − 1 intervening hyper-planes
of bonds, transverse to a chosen direction, are projected onto every lth hyper-plane, followed
by the same step for l − 1 hyper-planes being projected onto the lth plane in the next direction
and so on. In the end, one obtains a renormalized hyper-cubic lattice (of bond length l) in
generation I + 1 with a reformulated (I + 1)-bond consisting of a sub-graph of

b = ld−1 (2)

parallel branches of a series of lI -bonds each. We can rewrite equation (2) as

d = 1 +
ln(b)

ln(l)
, (3)

anticipating analytic continuation in l and b to obtain results in arbitrary dimensions d.

Instead of solving the problem on the hyper-cubic lattice, we merely need to consider the
recursive scheme of obtaining the bond distribution in generation I + 1 from sub-graphs of
bonds from generation I. Numerically, this is done efficiently at any temperature T to yield a
stationary bond distribution for I → ∞, i.e. the thermodynamic limit L = lI → ∞.

Here, we are only concerned with T = 0, which simplifies the calculation drastically to
the point that analytical results can be obtained. For instance, a series of l bonds can always
be replaced by the bond of smallest absolute weight. Thus, if these bonds are drawn from a
distribution PI (J ), then the distribution Q

(l)
I (K) of the effective bond K replacing the series

can be obtained from

Q
(l)
I (K) = P{K = sign(J1 × J2 × · · · × Jl) min(|J1|, . . . , |Jl|)},

∝
∫ ∞

−∞
dJl PI (Jl)

∫ ∞

−∞
dJl−1PI (Jl−1)�(|Jl| − |Jl−1|)

· · ·
∫ ∞

−∞
dJ1 PI (J1)�(|J2| − |J1|)δ(|J1| − |K|), (4)

where �(x) refers to the unit step function and δ(x) = �′(x) is the Dirac delta-function. In
writing equation (4), we have dropped the obvious norm of Q(l)(K). We have also exploited
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the symmetry of the integrand under relabelling J1, . . . , Jl which in principle consists of a
sum of l! such terms, each for a different ordering in the magnitude of |Ji |.

Similarly, having b bonds drawn from a distribution Q(l)(K) in parallel leads to the
distribution PI+1(J ) of the reformulated bond at generation I + 1,

PI+1(J ) =
∫ ∞

−∞

b∏
i=1

[
dKiQ

(l)
I (Ki)

]
δ

(
J −

b∑
i=1

Ki

)
,

=
∫ ∞

−∞

dω

2π
eiωJ

[∫ ∞

−∞
dKQ

(l)
I (K) e−iωK

]b

, (5)

where we have used the integral representation δ(x) = ∫ ∞
−∞ dω eiωx/(2π).

For general PI , equations (4) and (5) both are quite complicated. This is particularly
true, since we would be interested in finding the limiting shape of PI (J ) after infinitely many
iterations, I → ∞. In that limit, we expect the effective coupling between domains a distance
L = lI apart to scale as [3]

Jeff(L) ∼ lyJeff(L/l). (6)

Each iteration of the characteristic ‘width’ Jeff(L) ≡ [〈J 2n〉I ]1/2n ∼ 〈|�E|〉L (any n =
1, 2, . . .) of PI (J ) increases (or decreases) by a factor of ly, so

PI+1(J ) ∼ 1

ly
PI

(
J

ly

)
(I → ∞). (7)

Clearly, if the width grew smaller, ly < 1, the behaviour of PI (J ) near J = 0 would become
increasingly relevant, explaining the non-universal behaviour there [8].

We can now report on a solution for equations (4) and (5) for all values of I for a specific
set of initial distributions and choices of l and b, appropriately analytically continued. With
those choices, only one iteration of equations (4) and (5) is necessary, since the distribution
remains shape invariant, i.e. equation (7) becomes an equality. This set of distributions is
continuous and finite near the origin and thus should represent the universality class containing
Gaussian bonds, for instance. Starting more generally with an initial distribution

P0(J ) = q + 1

2J0

(
1 − |J |

J0

)q

�

(
1 − |J |

J0

)
(q > −1), (8)

where J0 > 0 sets the energy scale for this distribution, it is easy to show that

Q
(l)
0 (K) = l(q + 1)

2J0

(
1 − |K|

J0

)lq+l−1

�

(
1 − |K|

J0

)
, (9)

by recursion of equation (4). Note that equation (9) readily continues to any real value of
l > 0.

The evaluation of equation (5) is somewhat more complex. To facilitate the subsequent
analysis, it is best to consider the moment generating function for PI (J ),

φI+1(α) = 〈e−iαJ 〉I+1,

=
∫ ∞

−∞
dJ e−iαJ

∫ ∞

−∞

dω

2π
eiωJ

[∫ ∞

−∞
dKQ

(l)
I (K) e−iωK

]b

,

=
[∫ ∞

−∞
dKQ

(l)
I (K) e−iαK

]b

, (10)
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where the integral over J merely represents a δ-function. Using equation (9), we find

φ1(α) =
[∫ ∞

−∞
dKQ

(l)
0 (K) e−iαK

]b

,

=
[
l(q + 1)

∫ 1

0
dx(1 − x)lq+l−1 cos(αJ0x)

]b

. (11)

Correspondingly, we find for the generating function of the initial bond distribution in
equation (8)

φ0(α) = 〈e−iαJ 〉0 = (q + 1)

∫ 1

0
dx(1 − x)q cos(αJ0x). (12)

Despite the obvious similarities between equations (11) and (12), finding a set of
parameters that make φ0 and φ1 similar is hard because of the exponent b in equation (11).
Even for b = 1 and l 	= 1, i.e. d = 1 according to equation (3), we need to iterate for I → ∞
to find the width to decay to zero with 1/L, i.e. y1 = −1. In our efforts, we have found
merely two solutions, both pertaining to zero dimensions, with the required properties, each
independently yielding the same result.

First, for l = 2 we have to continue the ‘branching number’ to b = 1/2 to obtain d = 0
in equation (3). Then, for the rectangular function for P0(J ), i.e. q = 0, we find

φ0(α) = sin(αJ0)

αJ0
, φ1(α) =

[
4 sin2

(
αJ0

2

)
(αJ0)2

] 1
2

, (13)

both of which are invariant in a sufficiently large open interval around α = 0, required
to generate any moment. We identifying in equation (6) Jeff(L = l0) = J0 and
Jeff(L = l1) = J0/2 = lyJeff(L = l0), hence, y0 = −1.

Second, for b = 2 we have to continue the ‘series number’ to l = 1/2 to obtain d = 0 in
equation (3). Then, for the triangular function for P0(J ), i.e. q = 1, we find

φ0(α) = 4 sin2
(

αJ0
2

)
(αJ0)2

, φ1(α) = sin2(αJ0)

(αJ0)2
. (14)

In this case, we identify in equation (6) again Jeff(L = l0) = J0, but Jeff(L = l1) = 2J0,

which now results again in y0 = −1 because length scales are actually shrinking, l = 1/2.

It is clear that nothing will change on this result under further iteration, I → I + 1.

Assuming that there is a unique solution for equation (7), one would expect that any choice
for P0(J ) that is continuous at J = 0 should converge to a rectangular (triangular) function
for l = 1/b = 2

(= 1
2

)
. We have not been able to extract any further result of this nature.

In conclusion, we are led to believe that y0 = −1. Of course, such a result has to be
considered with care. It is a weakness of MK that its results for a given dimension d according
to equation (3) are not generally unique [9]. Here, at least, we found two different combinations
of l and b, both giving d = 0 and yielding an identical stiffness exponent. This may indicate a
unique result for any combination l = 1/b. Furthermore, it is not clear that the MK result for
d = 0 should necessarily correspond quantitatively to an Edwards–Anderson spin glass on a
zero-dimensional lattice. This is only known to be true for d = 1 (i.e., b = 1) and certainly
wrong for increasing d > 1, albeit with slowly increasing error.
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